This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products ...
Read More
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through to simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 97 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) by the same author, the present work is nearly twice the size of the original work. It contains solutions to many of the open problems which are discussed in greater detail than before. Among the new topics considered are ultraproducts and FedorchukA-s theorem, and there is a more complete treatment of the cellularity of free products. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including tree algebras and superatomic algebras. Review: "This book is an indispensable tool for anyone working in Boolean algebra, and is also recommended for set-theoretic topologists." - Zentralblatt MATH
Read Less
Add this copy of Cardinal Invariants on Boolean Algebras to cart. $57.00, very good condition, Sold by Munster & Company rated 4.0 out of 5 stars, ships from Corvallis, OR, UNITED STATES, published 1996 by Birkhäuser Verlag.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Very Good. Basel / Boston / Berlin: Birkhäuser Verlag, 1996. 298 pp. 24 x 16 pp. Green and white paper covered boards, in a removable clear mylar cover. Light bumping to upper corners of boards. Previous owner's bookplate to front pastedown. Interior is clean and unmarked. Binding firm. Hard Cover. Very Good.
Add this copy of Cardinal Invariants on Boolean Algebras (Progress in to cart. $98.62, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2004 by Birkhauser.