Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear ...
Read More
Many mechanics and physics problems have variational formulations making them appropriate for numerical treatment by finite element techniques and efficient iterative methods. This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, augmented Lagrangians, and nonlinear least square methods are all covered in detail, as are many applications. "Numerical Methods for Nonlinear Variational Problems," originally published in the Springer Series in Computational Physics, is a classic in applied mathematics and computational physics and engineering. This long-awaited softcover re-edition is still a valuable resource for practitioners in industry and physics and for advanced students.
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Very Good in Printed Boards jacket. 8vo-over 7¾"-9¾" tall. 493 pp. Tightly bound. Corners not bumped. Text is Free of Markings. Fading to cloth on spine.