This self-contained book is excellent for graduate-level courses devoted to variational analysis, optimization, and partial differential equations (PDEs). It provides readers with a complete guide to problems in these fields as well as a detailed presentation of the most important tools and methods of variational analysis. New trends in variational analysis are also presented, along with recent developments and applications in this area. It contains several applications to problems in geometry, mechanics, elasticity, and ...
Read More
This self-contained book is excellent for graduate-level courses devoted to variational analysis, optimization, and partial differential equations (PDEs). It provides readers with a complete guide to problems in these fields as well as a detailed presentation of the most important tools and methods of variational analysis. New trends in variational analysis are also presented, along with recent developments and applications in this area. It contains several applications to problems in geometry, mechanics, elasticity, and computer vision, along with a complete list of references. The book is divided into two parts. In Part I, classical Sobolev spaces are introduced and the reader is provided with the basic tools and methods of variational analysis and optimization in infinite dimensional spaces, with applications to classical PDE problems. In Part II, BV spaces are introduced and new trends in variational analysis are presented.
Read Less