Understanding how crops will respond to climate change is essential to agriculture's ability to adapt and have the greatest probability of continuing to meet societal needs. Crop model intercomparison and improvement are required to advance understanding of the impact of future climate change on crop growth and yield. Initial efforts undertaken in the Agriculture Model Intercomparison and Improvement Project (AgMIP) led to several observations where crop models were not adequately simulating growth and development. Enhanced ...
Read More
Understanding how crops will respond to climate change is essential to agriculture's ability to adapt and have the greatest probability of continuing to meet societal needs. Crop model intercomparison and improvement are required to advance understanding of the impact of future climate change on crop growth and yield. Initial efforts undertaken in the Agriculture Model Intercomparison and Improvement Project (AgMIP) led to several observations where crop models were not adequately simulating growth and development. Enhanced efforts are required to quantify the carbon dioxide temperature water interactions in plant growth and yield. This volume in the Advances in Agricultural Systems Modeling series presents progress in that area, with experimental observations across crops, simulation modeling outcomes, and future challenges in improving crop simulation models.--
Read Less