Over the last several years, physicists interested in understanding the structure of matter at the fundamental partonic (quark and lepton) level have come to realize that an electron-ion collider can address many of the outstanding questions in hadronic physics. In Summer 2000, a new Long Range Planning Exercise was announced for nuclear physics in the United States, and the proponents of an electron-ion collider came together to make the scientific case for this machine. This workshop summarizes the physics case and ...
Read More
Over the last several years, physicists interested in understanding the structure of matter at the fundamental partonic (quark and lepton) level have come to realize that an electron-ion collider can address many of the outstanding questions in hadronic physics. In Summer 2000, a new Long Range Planning Exercise was announced for nuclear physics in the United States, and the proponents of an electron-ion collider came together to make the scientific case for this machine. This workshop summarizes the physics case and machine design for a next generation facility to study the fundamental structure of hadrons. Topics include: Spin and flavor structure of the nucleon, semi-exclusive processes, heavy quarks/target fragmentation, e-A physics, and machine.
Read Less