With their high specific strength and stiffness, composites have the potential to significantly lower the vehicle weight, which can have a dramatic effect on improving fuel efficiency and reducing greenhouse gas emissions. For the past decade or so, composites have been experiencing several transitions, including the transition from micro-scale reinforcement fillers to nano-scale reinforcement fillers, resulting in the nanocomposite. The effectiveness of the nano-sized fillers in composites can be explained by one of their ...
Read More
With their high specific strength and stiffness, composites have the potential to significantly lower the vehicle weight, which can have a dramatic effect on improving fuel efficiency and reducing greenhouse gas emissions. For the past decade or so, composites have been experiencing several transitions, including the transition from micro-scale reinforcement fillers to nano-scale reinforcement fillers, resulting in the nanocomposite. The effectiveness of the nano-sized fillers in composites can be explained by one of their unique geometric properties: the length-to-thickness aspect ratio. Therefore, nano-sized fillers have exceptionally higher reinforcing efficiency than the conventional, large fillers. The effectiveness of the nano-sized fillers in composites is also due to their large surface area and surface energy. This book consists of a collection of technical papers selected from the automotive composites and other relevant sessions that the editors have organized for the SAE World Congress over the past decade. It begins with a section on the perspectives of nanocomposites in the automotive industry, with of three excellent papers given by experts from the industry and academia. Following, it brings to the reader in-depth information on the three major nanocomposites categories: Nano-fiber reinforced composites Nano-platelet reinforced composites Nano-particle reinforced composites
Read Less