The R Guide for New Data Scientists is written for someone who has graduated from college and has either had some discipline related course or has a desire to learn some of the basic data science building blocks. Data science is interdisciplinary, and I have work with people who have backgrounds in business or economics and are competent data scientists with some additional coursework. Ordinarily, we look for potential data scientists who have degrees in statistics, computer science, econometrics, information technology, ...
Read More
The R Guide for New Data Scientists is written for someone who has graduated from college and has either had some discipline related course or has a desire to learn some of the basic data science building blocks. Data science is interdisciplinary, and I have work with people who have backgrounds in business or economics and are competent data scientists with some additional coursework. Ordinarily, we look for potential data scientists who have degrees in statistics, computer science, econometrics, information technology, operations research, mathematics, or engineering. That encompasses a wide range of disciplines. People who become data scientists generally have coursework in statistics, data analysis, basic programming, and college mathematics. During or after college, they have been exposed to machine learning models and prediction, R or Python programming, and some data wrangling. This book is designed to help with the latter. We'll cover basic data science tools and R programming with RStudio. We'll cover getting and cleaning data, data preprocessing, exploratory data analysis (EDA), inferential statistics, regression models, generalized linear models, machine learning and prediction using random forests, and building Shiny apps. There is R coding in every chapter, with many examples. Leaning the content is driven by very involved examples, including some using COVID-19 data. You'll find data scientists at banks, insurance companies, railroads, hospitals, utilities, and pharmaceutical companies. They work at Google, Amazon, Facebook, Netflix, Wal-Mart, Caterpillar. They are employed by the Department of Transportation (DoT), the Federal Bureau of Investigation (FBI), the Centers for Disease Control (CDC), the National Aeronautics and Space Administration (NASA). and the Department of Defense (Dod). Having a good data science team is like bringing a combined arms force to bear on a stubborn, defending enemy to drive them from their stronghold and reveal their vulnerabilities. "Torture the data, and it will confess to anything." - Ronald Coase, winner of the Nobel Prize in Economics
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.