Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what ...
Read More
Everyone knows what braids are, whether they be made of hair, knitting wool, or electrical cables. However, it is not so evident that we can construct a theory about them, i.e. to elaborate a coherent and mathematically interesting corpus of results concerning them. This book demonstrates that there is a resoundingly positive response to this question: braids are fascinating objects, with a variety of rich mathematical properties and potential applications. A special emphasis is placed on the algorithmic aspects and on what can be called the 'calculus of braids', in particular the problem of isotopy. Prerequisites are kept to a minimum, with most results being established from scratch. An appendix at the end of each chapter gives a detailed introduction to the more advanced notions required, including monoids and group presentations. Also included is a range of carefully selected exercises to help the reader test their knowledge, with solutions available.
Read Less