Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms, which have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high-speed trains. The authors present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils, and highlight the use of ...
Read More
Nonlinear matrix equations arise frequently in applied science and engineering. This is the first book to provide a unified treatment of structure-preserving doubling algorithms, which have been recently studied and proven effective for notoriously challenging problems, such as fluid queue theory and vibration analysis for high-speed trains. The authors present recent developments and results for the theory of doubling algorithms for nonlinear matrix equations associated with regular matrix pencils, and highlight the use of these algorithms in achieving robust solutions for notoriously challenging problems that other methods cannot. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations is intended for researchers and computational scientists. Graduate students may also find it of interest.
Read Less