Predicting the potential behavior and effects of wildland fire is an essential task in fire management. Mathematical surface fire behavior and fire effects models and prediction systems are driven in part by fuelbed inputs such as load, bulk density, fuel particle size, heat content, and moisture of extinction. To facilitate use in models and systems, fuelbed inputs have been formulated into fuel models. A fuel model is a set of fuelbed inputs needed by a particular fire behavior or fire effects model. Different kinds of ...
Read More
Predicting the potential behavior and effects of wildland fire is an essential task in fire management. Mathematical surface fire behavior and fire effects models and prediction systems are driven in part by fuelbed inputs such as load, bulk density, fuel particle size, heat content, and moisture of extinction. To facilitate use in models and systems, fuelbed inputs have been formulated into fuel models. A fuel model is a set of fuelbed inputs needed by a particular fire behavior or fire effects model. Different kinds of fuel models are used in fire science; this document addresses only fire behavior fuel models for use in the Rothermel (1972) surface fire spread model.
Read Less