This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn Rm (m 2n - 1) and R2 R2, and Marston Morse, for mappings who studied these singularities for Rn R. It was Rene Thorn who noticed (in the late '50's) that all of these results ...
Read More
This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn Rm (m 2n - 1) and R2 R2, and Marston Morse, for mappings who studied these singularities for Rn R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42]) gave the first general exposition of this theory. However, these notes preceded the work of Bernard Malgrange [23] on what is now known as the Malgrange Preparation Theorem-which allows the relatively easy computation of normal forms of stable singularities as well as the proof of the main theorem in the subject-and the definitive work of John Mather. More recently, two survey articles have appeared, by Arnold [4] and Wall [53], which have done much to codify the new material; still there is no totally accessible description of this subject for the beginning student. We hope that these notes will partially fill this gap. In writing this manuscript, we have repeatedly cribbed from the sources mentioned above-in particular, the Thom-Levine notes and the six basic papers by Mather."
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Very Good in No d/j as Published jacket. Size: 8vo-over 7¾"-9¾" tall; Type: Book N.B. Small plain label and inscription to inside front cover. (MATHEMATICS)
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
*Price HAS BEEN REDUCED by 10% until Monday, Nov. 25 (weekend sale)* 209 pp., Paperback, minor price sticker residue to back cover else very good. -If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Very Good. 9 x 5.9 x 0.5. Paperback. Book Condition: Very Good. Springer, 1974. 220 pages. Nice Firm copy! Light general wear. Previous owner name. Size: 9 x 5.9 x 0.5. Science/Nature: Mathematics 6084.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Trade paperback (US). Glued binding. 209 p. Contains: Unspecified. Graduate Texts in Mathematics, 14. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.