Neural-network models for event analysis are widely used in experimental high-energy physics, star/galaxy discrimination, control of adaptive optical systems, prediction of nuclear properties, fast interpolation of potential energy surfaces in chemistry, classification of mass spectra of organic compounds, protein-structure prediction, analysis of DNA sequences, and design of pharmaceuticals. This book, devoted to this highly interdisciplinary research area, addresses scientists and graduate students. The pedagogically ...
Read More
Neural-network models for event analysis are widely used in experimental high-energy physics, star/galaxy discrimination, control of adaptive optical systems, prediction of nuclear properties, fast interpolation of potential energy surfaces in chemistry, classification of mass spectra of organic compounds, protein-structure prediction, analysis of DNA sequences, and design of pharmaceuticals. This book, devoted to this highly interdisciplinary research area, addresses scientists and graduate students. The pedagogically written review articles range over a variety of fields including astronomy, nuclear physics, experimental particle physics, bioinformatics, linguistics, and information processing.
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Trade paperback (US). Glued binding. 290 p. Contains: Illustrations, black & white, Illustrations, color. Lecture Notes in Physics, 522. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.