Most systems in science, engineering, and biology are of partial differential systems (PDSs) modeled by partial differential equations. Many books about partial differential equations have been written by mathematicians and mainly address some fundamental mathematic backgrounds and discuss some mathematic properties of partial differential equations. Only a few books on PDSs have been written by engineers; however, these books have focused mainly on the theoretical stabilization analysis of PDSs, especially mechanical ...
Read More
Most systems in science, engineering, and biology are of partial differential systems (PDSs) modeled by partial differential equations. Many books about partial differential equations have been written by mathematicians and mainly address some fundamental mathematic backgrounds and discuss some mathematic properties of partial differential equations. Only a few books on PDSs have been written by engineers; however, these books have focused mainly on the theoretical stabilization analysis of PDSs, especially mechanical systems. This book investigates both robust stabilization control design and robust filter design and reference tracking control design in mechanical, signal processing, and control systems to fill a gap in the study of PDSs. Robust Engineering Designs of Partial Differential Systems and Their Applications offers some fundamental background in the first two chapters. The rest of the chapters focus on a specific design topic with a corresponding deep investigation into robust H filtering, stabilization, or tracking design for more complex and practical PDSs under stochastic fluctuation and external disturbance. This book is aimed at engineers and scientists and addresses the gap between the theoretical stabilization results of PDSs in academic and practical engineering designs more focused on the robust H filtering, stabilization, and tracking control problems of linear and nonlinear PDSs under intrinsic random fluctuation and external disturbance in industrial applications. Part I provides backgrounds on PDSs, such as Galerkin's, and finite difference methods to approximate PDSs and a fuzzy method to approximate nonlinear PDSs. Part II examines robust H filter designs for the robust state estimation of linear and nonlinear stochastic PDSs. And Part III treats robust H stabilization and tracking control designs of linear and nonlinear PDSs. Every chapter focuses on an engineering design topic with both theoretical design analysis and practical design examples.
Read Less