The four papers in this volume examine attractors of partial differential equations, with a focus on investigation of elements of attractors. Unlike the finite-dimensional case of ordinary differential equations, an element of the attractor of a partial differential equation is itself a function of spatial variables. This dependence on spatial variables is investigated by asymptotic methods. For example, the asymptotics show that the turbulence generated in a tube by a large localized external force does not propagate to ...
Read More
The four papers in this volume examine attractors of partial differential equations, with a focus on investigation of elements of attractors. Unlike the finite-dimensional case of ordinary differential equations, an element of the attractor of a partial differential equation is itself a function of spatial variables. This dependence on spatial variables is investigated by asymptotic methods. For example, the asymptotics show that the turbulence generated in a tube by a large localized external force does not propagate to infinity along the tube if the flux of the flow is not too large. Another topic considered here is the dependence of attractors on singular perturbations of the equations. The theory of unbounded attractors of equations without bounded attracting sets is also covered. All of the articles are systematic and detailed, offering a comprehensive review of approaches and techniques developed by the Moscow school.
Read Less
Add this copy of Properties of Global Attractors of Partial Differential to cart. $32.00, good condition, Sold by J. Hood, Booksellers, Inc. rated 5.0 out of 5 stars, ships from Baldwin City, KS, UNITED STATES, published 1992 by American Mathematical Society.
Add this copy of Properties of Global Attractors of Partial Differential to cart. $62.33, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 1992 by Amer Mathematical Society.