The book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an ...
Read More
The book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an approach to the nonlinear fluid dynamic equations. From the viewpoint of dynamical systems, the fluid dynamic equations arise in the theory as a tool to describe an attractor of the kinetic equation.
Read Less