Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies is a one-stop reference that thoroughly covers the mechanistic target of rapamycin (mTOR). mTOR, also known as the mammalian target of rapamycin, is a 289-kDa serine/threonine protein kinase that is ubiquitous throughout the body and has a critical role in gene transcription and protein formation, stem cell development, cell survival and senescence, aging, immunity, tissue regeneration and repair, metabolism, tumorigenesis, ...
Read More
Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies is a one-stop reference that thoroughly covers the mechanistic target of rapamycin (mTOR). mTOR, also known as the mammalian target of rapamycin, is a 289-kDa serine/threonine protein kinase that is ubiquitous throughout the body and has a critical role in gene transcription and protein formation, stem cell development, cell survival and senescence, aging, immunity, tissue regeneration and repair, metabolism, tumorigenesis, oxidative stress, and pathways of programmed cell death that include apoptosis and autophagy. Incorporating a translational medicine approach, this important reference highlights the basic cellular biology of mTOR pathways, presents the role of mTOR during normal physiologic function and disease, and illustrates how the mechanisms of mTOR can be targeted for current and future therapeutic treatment strategies. Coverage of mTOR signaling includes the entire life cycle of cells that impacts multiple systems of the body including those of nervous, cardiovascular, immune, musculoskeletal, endocrine, reproductive, renal, and respiratory origin.
Read Less