Since mechanics is the science of motion, studies in this field now cover a wider range of problems than has been the case in earlier classical approaches. This has been achieved by the inclusion of aspects relating to the mechanics of continuous media, or strength problems. The topics covered in this book present a comprehensive treatment of the subject providing a broader perspective to the meaning of mechanics, in the modern sense of the word.Problems in the areas of strength of materials, hydromechanics and theory of ...
Read More
Since mechanics is the science of motion, studies in this field now cover a wider range of problems than has been the case in earlier classical approaches. This has been achieved by the inclusion of aspects relating to the mechanics of continuous media, or strength problems. The topics covered in this book present a comprehensive treatment of the subject providing a broader perspective to the meaning of mechanics, in the modern sense of the word.Problems in the areas of strength of materials, hydromechanics and theory of elasticity are examined. The author has also endeavoured to show a certain universality of some methods seemingly specific to mechanics by tackling some problems involving electrical or electromechanical systems but based on Lagrange's equations.The book has been designed to emphasize that mechanics is a deductive system, where the aim is not only to present mechanics as the science of motion but also to show that it serves as a bridge between mathematics and its applications, in the broadest sense of the word. Mechanical problems have inspired great mathematicians to come to grips with new mathematical problems, an excellent example here being the problem of the brachistochrone which initiated the development of the variational calculus. The book gives a comprehensive overview on new theoretical findings, and gives many applications which will prove indispensable to all those interested in mechanical and allied problems.
Read Less