"Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12 . This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent features of PyTorch. The book presents a practical program based on the fish dataset which provides step-by-step guidance through the processes of building, training and deploying neural networks, with each example ...
Read More
"Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12 . This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent features of PyTorch. The book presents a practical program based on the fish dataset which provides step-by-step guidance through the processes of building, training and deploying neural networks, with each example prepared for immediate implementation . Given your familiarity with machine learning and neural networks, this book offers concise explanations of foundational topics, allowing you to proceed directly to the practical, advanced aspects of PyTorch programming. The key learnings include the design of various types of neural networks, the use of torch.compile() for performance optimization, the deployment of models using TorchServe, and the implementation of quantization for efficient inference . Furthermore, you will also learn to migrate TensorFlow models to PyTorch using the ONNX format . The book employs essential libraries, including torchvision, torchserve, tf2onnx, onnxruntime, and requests, to facilitate seamless integration of PyTorch with production environments . Key Learnings Master tensor manipulations and advanced operations using PyTorch's efficient tensor libraries. Build feedforward, convolutional, and recurrent neural networks from scratch. Implement transformer models for modern natural language processing tasks. Use CUDA 12 and mixed precision training (AMP) to accelerate model training and inference. Deploy PyTorch models in production using TorchServe, including multi-model serving and versioning. Migrate TensorFlow models to PyTorch using ONNX format for seamless cross-framework compatibility. Optimize neural network architectures using torch.compile() for improved speed and efficiency. Utilize PyTorch's Quantization API to reduce model size and speed up inference. Setup custom layers and architectures for neural networks to tackle domain-specific problems. Monitor and log model performance in real-time using TorchServe's built-in tools and configurations. Table of Content Introduction To PyTorch 2.3 and CUDA 12 Getting Started with Tensors Building Neural Networks with PyTorch Training Neural Networks Advanced Neural Network Architectures Quantization and Model Optimization Migrating TensorFlow to PyTorch Deploying PyTorch Models with TorchServe
Read Less
Add this copy of Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2 to cart. $62.06, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2024 by Gitforgits.
Add this copy of Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2 to cart. $67.63, new condition, Sold by GreatBookPricesUK5 rated 4.0 out of 5 stars, ships from Castle Donington, DERBYSHIRE, UNITED KINGDOM, published 2024 by Gitforgits.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Trade paperback (US). Glued binding. 192 p. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Learning Pytorch 2.0, Second Edition: Utilize Pytorch 2 to cart. $68.67, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2024 by GitforGits.
Add this copy of Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2 to cart. $68.96, new condition, Sold by Booksplease rated 4.0 out of 5 stars, ships from Southport, MERSEYSIDE, UNITED KINGDOM, published 2024 by Gitforgits.
Add this copy of Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2 to cart. $74.85, like new condition, Sold by GreatBookPricesUK5 rated 4.0 out of 5 stars, ships from Castle Donington, DERBYSHIRE, UNITED KINGDOM, published 2024 by Gitforgits.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Trade paperback (US). Glued binding. 192 p. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Learning PyTorch 2.0, Second Edition: Utilize PyTorch 2 to cart. $85.95, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2024 by Gitforgits.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Trade paperback (US). Glued binding. 192 p. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Learning Pytorch 2.0, Second Edition: Utilize Pytorch 2 to cart. $103.11, new condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2024 by GitforGits.