When two phase coherent laser beams are crossed at an angle, the electric fields of the beams produce a sinusoidal interference pattern. Partial absorption of the electric fields in a colloidal sample creates a sinusoidal temperature field. The temperature gradient then causes production of concentration gradient in the sample, known as the Ludwig-Soret effect or thermal diffusion. Solutions to nonlinear partial differential equations that describe the effect show that shock waves analogous to fluid shock waves are produced ...
Read More
When two phase coherent laser beams are crossed at an angle, the electric fields of the beams produce a sinusoidal interference pattern. Partial absorption of the electric fields in a colloidal sample creates a sinusoidal temperature field. The temperature gradient then causes production of concentration gradient in the sample, known as the Ludwig-Soret effect or thermal diffusion. Solutions to nonlinear partial differential equations that describe the effect show that shock waves analogous to fluid shock waves are produced. A mathematical relation between the shock speed and the density fraction of one component, analogous to the well-known Rankine-Hugoniot equations, is derived. Self-diffraction and imaging experiments show shock-like behavior in colloidal systems governed by the thermal diffusion.
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.