The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gelfand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to ...
Read More
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gelfand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
*Price HAS BEEN REDUCED by 10% until Monday, Nov. 25 (weekend sale)* *THIS IS THE 1967 Academic Press printing* 449 pp., hardcover, ex library, else text clean & binding tight. -If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good in Good jacket. Academic Press, 1966. Jacket soiled/rubbed, edges and folds bumped, spine lightly sunned, ~1 inch tear in top spine end, minor chipping and tearing at corners and spine ends; cover lightly rubbed, corners and spine ends lightly rubbed/bumped; edges very lightly soiled; front pastedown has signature of previous owner, the mathematician Ray Kunze; binding tight; cover, edges, and interior intact and clean except as noted. First Edition. hardcover. Good/Good.