Discrete Hilbert-type inequalities including Hilbert's inequality are important in mathematical analysis and its applications. In 1998, the author presented an extension of Hilbert's integral inequality with an independent parameter. In 2004, some new extensions of Hilbert's inequality were presented by introducing two pairs of conjugate exponents and additional independent parameters. Since then, a number of new discrete Hilbert-type inequalities have arisen. In this book, the author explains how to use the way of weight ...
Read More
Discrete Hilbert-type inequalities including Hilbert's inequality are important in mathematical analysis and its applications. In 1998, the author presented an extension of Hilbert's integral inequality with an independent parameter. In 2004, some new extensions of Hilbert's inequality were presented by introducing two pairs of conjugate exponents and additional independent parameters. Since then, a number of new discrete Hilbert-type inequalities have arisen. In this book, the author explains how to use the way of weight coefficients and introduce specific parameters to build new discrete Hilbert-type inequalities and consider some applications. The book is intended to augment the reader's understanding of Hilbert-type inequalities.
Read Less
Add this copy of Discrete Hilbert-Type Inequalities to cart. $86.30, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2018 by Bentham Science Publishers.