Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, a range of accessible examples is used to show how Bayes' rule is actually a natural consequence of common sense reasoning. Bayes' rule is then derived using intuitive graphical representations of probability, and Bayesian analysis is applied to parameter estimation. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices ...
Read More
Discovered by an 18th century mathematician and preacher, Bayes' rule is a cornerstone of modern probability theory. In this richly illustrated book, a range of accessible examples is used to show how Bayes' rule is actually a natural consequence of common sense reasoning. Bayes' rule is then derived using intuitive graphical representations of probability, and Bayesian analysis is applied to parameter estimation. The tutorial style of writing, combined with a comprehensive glossary, makes this an ideal primer for novices who wish to become familiar with the basic principles of Bayesian analysis. Note that this book includes R (3.2) code snippets, which reproduce key numerical results and diagrams.
Read Less