The book focuses on developing Python-based GUI applications for video processing and analysis, catering to various needs such as object tracking, motion detection, and frame analysis. These applications utilize libraries like Tkinter for GUI development and OpenCV for video processing, offering user-friendly interfaces with interactive controls. They provide functionalities like video playback, frame navigation, ROI selection, filtering, and histogram analysis, empowering users to perform detailed analysis and manipulation ...
Read More
The book focuses on developing Python-based GUI applications for video processing and analysis, catering to various needs such as object tracking, motion detection, and frame analysis. These applications utilize libraries like Tkinter for GUI development and OpenCV for video processing, offering user-friendly interfaces with interactive controls. They provide functionalities like video playback, frame navigation, ROI selection, filtering, and histogram analysis, empowering users to perform detailed analysis and manipulation of video content. Each project tackles specific aspects of video analysis, from simplifying video processing tasks through a graphical interface to implementing advanced algorithms like Lucas-Kanade, Kalman filter, and Gaussian pyramid optical flow for optical flow computation and object tracking. Moreover, they integrate features like MD5 hashing for video integrity verification and filtering techniques such as bilateral filtering, anisotropic diffusion, and denoising for enhancing video quality and analysis accuracy. Overall, these projects demonstrate the versatility and effectiveness of Python in developing comprehensive tools for video analysis, catering to diverse user needs in fields like computer vision, multimedia processing, forensic analysis, and content verification. The first project aims to simplify video processing tasks through a user-friendly graphical interface, allowing users to execute various operations like filtering, edge detection, hashing, motion analysis, and object tracking effortlessly. The process involves setting up the GUI framework using tkinter, adding descriptive titles and containers for buttons, defining button actions to execute Python scripts, and dynamically generating buttons for organized presentation. Functionalities cover a wide range of video processing tasks, including frame operations, motion analysis, and object tracking. Users interact by launching the application, selecting an operation, and viewing results. Advantages include ease of use, organized access to functionalities, and extensibility for adding new tasks. Overall, this project bridges Python scripting with a user-friendly interface, democratizing advanced video processing for a broader audience. The second project aims to develop a video player application with advanced frame analysis functionalities, allowing users to open video files, navigate frames, and analyze them extensively. The application, built using tkinter, features a canvas for video display with zoom and drag capabilities, playback controls, and frame extraction options. Users can jump to specific times, extract frames for analysis, and visualize RGB histograms while calculating MD5 hash values for integrity verification. Additionally, users can open multiple instances of the player for parallel analysis. Overall, this tool caters to professionals in forensic analysis, video editing, and educational fields, facilitating comprehensive frame-by-frame examination and evaluation. The third project is a robust Python tool tailored for video frame analysis and filtering, employing Tkinter for the GUI. Users can effortlessly load, play, and dissect video files frame by frame, with options to extract frames, implement diverse filtering techniques, and visualize color channel histograms. Additionally, it computes and exhibits hash values for extracted frames, facilitating frame comparison and verification. With an array of functionalities, including OpenCV integration for image processing and filtering, alongside features like wavelet transform and denoising algorithms, this application is a comprehensive solution for users requiring intricate video frame scrutiny and manipulation. ...
Read Less
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
PLEASE NOTE, WE DO NOT SHIP TO DENMARK. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Please note we cannot offer an expedited shipping service from the UK.