Metal injection molding combines the most useful characteristics of powder metallurgy and plastic injection molding to facilitate the production of small, complex-shaped metal components with outstanding mechanical properties. The Handbook of metal injection molding provides an authoritative guide to this important technology and its applications.Part one discusses the fundamentals of the metal injection molding process with chapters on topics such as component design, important powder characteristics, compound manufacture, ...
Read More
Metal injection molding combines the most useful characteristics of powder metallurgy and plastic injection molding to facilitate the production of small, complex-shaped metal components with outstanding mechanical properties. The Handbook of metal injection molding provides an authoritative guide to this important technology and its applications.Part one discusses the fundamentals of the metal injection molding process with chapters on topics such as component design, important powder characteristics, compound manufacture, tooling design, molding optimization, debinding, and sintering. Part two provides a detailed review of quality issues, including feedstock characterisation, modeling and simulation, methods to qualify a MIM process, common defects and carbon content control. Special metal injection molding processes are the focus of part three, which provides comprehensive coverage of micro components, two material/two color structures, and porous metal techniques. Finally, part four explores metal injection molding of particular materials, including stainless steels, titanium and titanium alloys, thermal management alloys, high speed tool steels, heavy alloys, refractory metals, hard metals and soft magnetic alloys.With its distinguished editor and expert team of international contributors, the Handbook of metal injection molding is an essential guide for all those involved in the high-volume manufacture of small precision parts, across a wide range of high-tech industries such as microelectronics, biomedical and aerospace engineering.
Read Less