Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li(+) intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 down ca. 0.0V vs Li/Li(+) at a rate of 0.1 mV/s in a 1M LiClO4 solution in a 1: l (by ...
Read More
Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li(+) intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 down ca. 0.0V vs Li/Li(+) at a rate of 0.1 mV/s in a 1M LiClO4 solution in a 1: l (by volume) ethylene carbonate (EC): diethyl carbonate (DEC) mixture. In particular, clearly defined isosbestic points were observed for data collected in the potential range where the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur, i.e. 0.157
Read Less